Evolution of the MAT locus and its Ho endonuclease in yeast species.

نویسندگان

  • Geraldine Butler
  • Claire Kenny
  • Ailís Fagan
  • Cornelia Kurischko
  • Claude Gaillardin
  • Kenneth H Wolfe
چکیده

The genetics of the mating-type (MAT) locus have been studied extensively in Saccharomyces cerevisiae, but relatively little is known about how this complex system evolved. We compared the organization of MAT and mating-type-like (MTL) loci in nine species spanning the hemiascomycete phylogenetic tree. We inferred that the system evolved in a two-step process in which silent HMR/HML cassettes appeared, followed by acquisition of the Ho endonuclease from a mobile genetic element. Ho-mediated switching between an active MAT locus and silent cassettes exists only in the Saccharomyces sensu stricto group and their closest relatives: Candida glabrata, Kluyveromyces delphensis, and Saccharomyces castellii. We identified C. glabrata MTL1 as the ortholog of the MAT locus of K. delphensis and show that switching between C. glabrata MTL1a and MTL1alpha genotypes occurs in vivo. The more distantly related species Kluyveromyces lactis has silent cassettes but switches mating type without the aid of Ho endonuclease. Very distantly related species such as Candida albicans and Yarrowia lipolytica do not have silent cassettes. In Pichia angusta, a homothallic species, we found MATalpha2, MATalpha1, and MATa1 genes adjacent to each other on the same chromosome. Although some continuity in the chromosomal location of the MAT locus can be traced throughout hemiascomycete evolution and even to Neurospora, the gene content of the locus has changed with the loss of an HMG domain gene (MATa2) from the MATa idiomorph shortly after HO was recruited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary restoration of fertility in an interspecies hybrid yeast, by whole-genome duplication after a failed mating-type switch

Many interspecies hybrids have been discovered in yeasts, but most of these hybrids are asexual and can replicate only mitotically. Whole-genome duplication has been proposed as a mechanism by which interspecies hybrids can regain fertility, restoring their ability to perform meiosis and sporulate. Here, we show that this process occurred naturally during the evolution of Zygosaccharomyces para...

متن کامل

Efficient Mating-Type Switching in Candida glabrata Induces Cell Death

Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mat...

متن کامل

Switching of a mating-type a mutant allele in budding yeast Saccharomyces cerevisiae.

Aimed at investigating the recovery of a specific mutant allele of the mating type locus (MAT) by switching a defective MAT allele, these experiments provide information bearing on several models proposed for MAT interconversion in bakers yeast, Saccharomyces cerevisiae. Hybrids between heterothallic (ho) cells carrying a mutant MAT a allele, designated mata-2, and MAT alpha ho strains show a h...

متن کامل

Role of Saccharomyces Single-Stranded DNA-Binding Protein RPA in the Strand Invasion Step of Double-Strand Break Repair

The single-stranded DNA (ssDNA)-binding protein replication protein A (RPA) is essential for both DNA replication and recombination. Chromatin immunoprecipitation techniques were used to visualize the kinetics and extent of RPA binding following induction of a double-strand break (DSB) and during its repair by homologous recombination in yeast. RPA assembles at the HO endonuclease-cut MAT locus...

متن کامل

Chimeric Sex-Determining Chromosomal Regions and Dysregulation of Cell-Type Identity in a Sterile Zygosaccharomyces Allodiploid Yeast.

Allodiploidization is a fundamental yet evolutionarily poorly characterized event, which impacts genome evolution and heredity, controlling organismal development and polyploid cell-types. In this study, we investigated the sex determination system in the allodiploid and sterile ATCC 42981 yeast, a member of the Zygosaccharomyces rouxii species complex, and used it to study how a chimeric matin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 6  شماره 

صفحات  -

تاریخ انتشار 2004